A Guided Path Through the Large Deviations Series
This post serves as a short guide to the four-part series on large deviations and their applications to stochastic processes, biology, and weak-noise dynamical systems. Each article can be read independently, but together they form a coherent narrative that moves from foundational principles to modern applications. 1. Sanov’s Theorem and the Geometry of Rare Events The series begins with an intuitive introduction to Sanov’s theorem , highlighting how empirical distributions deviate from their expected behavior and how the Kullback-Leibler divergence emerges as the natural rate functional. This post lays the conceptual groundwork for understanding rare events in high-dimensional systems. Read the post → 2. Sanov’s Theorem in Living Systems The second article explores how Sanov’s theorem applies to biological and neural systems . Empirical measures, population variability, and rare transitions in gene expression or neural activity are framed through ...